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ABSTRACT
Hydrocarbons are the principal component of insect cuticle and play an important role
inmaintainingwater balance. Cuticular impermeability could be an adaptative response
to salinity and desiccation in aquatic insects; however, cuticular hydrocarbons have
been poorly explored in this group and there are no previous data on saline species. We
characterized cuticular hydrocarbons of adults and larvae of two saline aquatic beetles,
namely Nebrioporus baeticus (Dytiscidae) and Enochrus jesusarribasi (Hydrophilidae),
using a gas chromatograph coupled to a mass spectrometer. The CHC profile of adults
of both species, characterized by a high abundance of branched alkanes and low of
unsaturated alkenes, seems to be more similar to that of some terrestrial beetles (e.g.,
desert Tenebrionidae) comparedwith other aquaticColeoptera (freshwaterDytiscidae).
Adults of E. jesusarribasi had longer chain compounds than N. baeticus, in agreement
with their higher resistance to salinity and desiccation. The more permeable cuticle
of larvae was characterized by a lower diversity in compounds, shorter carbon chain
length and a higher proportion of unsaturated hydrocarbons compared with that of
the adults. These results suggest that osmotic stress on aquatic insects could exert a
selection pressure on CHC profile similar to aridity in terrestrial species.

Subjects Ecology, Entomology
Keywords CHC profile, Desiccation resistance, Dytiscidae, Hydrophilidae, Waterproofing cuticle,
Salinity

INTRODUCTION
Maintaining water balance is critical for insects survival, especially in arid and semi-arid
regions (Addo-Bediako, Chown & Gaston, 2001; Gibbs, Fukuzato & Matzkin, 2003). This is
true not only for terrestrial, but also for aquatic species which may be periodically exposed
to dry conditions during seasonal droughts and dispersal events. Insects in saline waters
are also exposed to hyperosmotic stress which alters water and ionic homeostasis (Bradley,
2009). Therefore, saline water insects in arid regions are challenged with contrasting
osmotic gradients from the aquatic and the aerial environment. Managing water loss under
such stressful conditions is a critical problem for aquatic insects, as they are thought to be
more permeable to water than their terrestrial counterparts (Beament, 1961).

Among the diverse ways tominimize water loss in terrestrial insects, the control of cuticle
permeability is one the most important mechanisms (Chung & Carroll, 2015; Rajpurohit et
al., 2017), but its role in aquatic ones has been less explored (e.g., Jacob & Hansen, 1986;
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Alarie, Joly & Dennie, 1998). The epicuticle of insects is covered with complex mixtures
of nonpolar and polar compounds (Gołębiowski et al., 2008), being hydrocarbons the
principal hydrophobic compounds of this layer, representing in some cases more than
90% of the cuticle (Hadley, 1977; Maliński et al., 1986). Insect cuticular hydrocarbons
(CHCs) are thought to represent a primary adaptation to desiccation imposed by the
transition to a terrestrial existence (Jallon et al., 1997). CHCs are exceptionally diverse and
include complex mixtures of straight-chain compounds (n-alkanes), branched alkanes and
unsaturated compounds (Lockey, 1988). Increases in the amount of CHCs or changes in
their chemical composition resulting in increased chain length, linearity, and saturation
are the main means of minimizing cuticular transpiration in insects (Benoit, 2010; Gibbs
& Rajpurohit, 2010). Besides the key role of CHCs in preventing water loss (Gibbs &
Rajpurohit, 2010; Savković, Vučković & Stojković, 2012), they are also involved in other
important functions, such as protecting insects from microorganisms (Stinziano et al.,
2015), chemical communication for recognition between closely related taxa (e.g., Howard
& Blomquist, 2005; Billeter et al., 2009; Savković, Vučković & Stojković, 2012; Pattanayak
et al., 2014; Zhang et al., 2014), sexual recognition (Carlson et al., 1971; Jacob & Hansen,
1986) or signalling of age and individual reproductive status (Cuvillier-Hot et al., 2001).
CHCs with chain lengths ranging from approximately 21 to 50 carbons are usually related
to cuticular permeability, while those with fewer than 21 carbons (volatile compounds)
are involved in other functions (Chung & Carroll, 2015), such as pheromones or defensive
compounds (Blomquist & Bagnères, 2010). Characterization of insect CHCs may therefore
provide valuable information on many aspects of insect physiology and ecology.

CHC profiles are shaped by phylogenetic constraints; for example, CHCs in Coleoptera
display common features at superfamily or family levels reflecting evolutionary tendencies
(Jacob & Hansen, 1986). However, the amount and composition of CHCs also shows
an important variation between species and populations reflecting local adaptation and
it is strongly associated with desiccation resistance (Gibbs, Chippindale & Rose, 1997;
Kwan & Rundle, 2010). For example, in desert Tenebrionids, the specific profile of CHC,
characterized by high proportions of long chain lengths of branched alkanes, is thought to be
a physiological adaptation to aridity (Hadley, 1978; Lockey, 1980). Similarly, CHC profiles
varied predictably in populations of Drosophila melanogaster based on known associations
between chain length, environmental variables and ecological function (Rajpurohit et al.,
2017). In aquatic insects, salinity could exert a selective pressure on CHCs so that saline
species could be expected to have a higher relative abundance of long-chain CHCs (higher
impermeability) than freshwater ones. However, most studies on CHC composition and
their functions have been carried out on terrestrial insects (e.g., Blomquist & Jackson, 1979;
Lockey, 1980; Alabi et al., 2011; Pattanayak et al., 2014; Stinziano et al., 2015; Rajpurohit
et al., 2017), whereas among aquatic ones, CHC profiles have only been described for
some freshwater dytiscids (Jacob & Hansen, 1986; Alarie, Joly & Dennie, 1998). On the
other hand, CHCs show a significant degree of plasticity conferring a notable intraspecific
variability (Howard & Blomquist, 1982; Gibbs & Rajpurohit, 2010). Many studies have
reported differences in CHC profiles within species depending on sex (e.g., Beran et
al., 2014; Pattanayak et al., 2014), developmental stage (e.g., Bagnères et al., 1996), the
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feeding state of individuals (e.g., Jacob & Hansen, 1986; Alabi et al., 2011), environmental
conditions (Toolson, 1982) or rearing temperature (e.g., Rouault et al., 2004; Rajpurohit et
al., 2017).

In inland saline waters, Coleoptera is one of the most representative and diverse
insect orders (Millán et al., 2011) and, therefore, have been recently used as model
organisms to study physiological tolerances to the main natural stressors in these systems,
i.e., temperature, salinity and desiccation (e.g., Sánchez-Fernández et al., 2010; Pallarés et
al., 2012; Céspedes et al., 2013; Pallarés et al., 2016). However, the potential role of cuticle
permeability in driving stress tolerance in water beetles is unknown.

The aim of this study was to characterize CHC profiles of two saline water beetles
representative of two of the most common families of Coleoptera in inland waters,
Nebrioporus baeticus (Schaum) (family Dytiscidae, suborder Adephaga) and Enochrus
jesusarribasi Arribas &Millán (family Hydrophiliade, suborder Polyphaga). Specifically, we
address the following questions: (1) Do CHC profiles of saline water beetles show similar
or different patterns to those found in other aquatic Coleoptera; (2) Do CHC profiles differ
between the two studied species; and (3) Do CHCs show intraspecific variation in relation
to sex and life stage within the studied species?

Because longer chain-length CHCs are thought to be more effective at preventing water
loss (Gibbs, 1998), we expected a higher proportion of these compounds in (i) the two
saline studied species compared with freshwater ones, (ii) the most halotolerant of the
studied species (E. jesusarribasi, see ‘Material and Methods’), (iii) adults compared with
larvae in both studied species.

MATERIALS AND METHODS
Study species, specimens collection and maintenance
The studied species belong to two distant lineages of beetles (suborders Polyphaga and
Adephaga) that have successfully colonized saline waters, showing a high osmoregulatory
ability across a wide range of salinities (Pallarés et al., 2015). Adults of themost halotolerant
species, E. jesusarribasi, are crawling, herbivorous and usually found in the shallowmargins
of hypersaline water bodies, while those fromN. baeticus inhabit mesosaline waters and are
active diving predators (Millán et al., 2014). Larvae of both species are benthic, carnivorous
and desiccation-sensitive. Flying adults are the main source of colonizers during seasonal
droughts.

Adults and larvae (second and third stages) specimens of N. baeticus and E. jesusarribasi
were collected from typical localities in SE Spain in October 2015, where they constitute
highly abundant populations, namely Chícamo stream (mean conductivity: 20 mS cm_1)
and Rambla Salada stream (mean conductivity: 84 mS cm_1) with the collection permission
number 201600150115 from theConsejeria deAgua, Agricultura yMedioAmbiente, Región
de Murcia. Adults and larvae of each species were separately maintained in the laboratory
for 48 h at 20 ◦C in 4 L aquaria containing water and substrate from the collection site.
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Extraction and analysis of cuticular hydrocarbons
Prior to CHC extraction, individuals of both life stages were killed by freezing at−20 ◦C in
glass vials. CHCs of adult males (n= 10), females (n= 10) and larvae of each species (n= 10
for N. baeticus and n= 16 for E. jesusarribasi) were extracted individually in 2 mL vials by
submerging each specimen into 175 µL of n-hexane containing 10 ng µL_1 of octadecane
(C18) as an internal standard (e.g., Kwan & Rundle, 2010; Stinziano et al., 2015). Vials
were continuously stirred for 5 h at 20 ◦C. The lipid extract was placed in borosilicate
glass microinserts and evaporated and concentrated to dryness under a gentle stream of
gas nitrogen. The residue was dissolved in 20 µL of hexane and ultrasonicated for 2 min
(e.g., Gołębiowski et al., 2011; Savković, Vučković & Stojković, 2012). After CHC extraction,
adults were sexed by examining genitalia in a stereomicroscope (Leica M165C with a Leica
MEB10 fibre optic illuminator).

CHCs were identified and quantified by gas chromatography-mass spectrometry (GC-
MS) using a 7890B GC system (Agilent Technologies, Santa Clara, CA, USA) and 5977
MSD (Network Mass selective Detector (MS) fitted with a HP-5 phenylmethyl siloxane
column of 30 m× 250 µm× 0.25 µm a pulsed split less inlet (at 250 ◦C). The temperature
program began at 70 ◦C, ramping at 30 ◦C min_1 to 200 ◦C, slowing to 5 ◦C min_1 to
310 ◦C, then ramping at 120 ◦C min_1 to 310 ◦C and holding for 5 min.

The basic characterization of CHC structures was conducted by interpreting their EI
mass spectra (number of carbons, methyl branching in saturated chains and double bonds
in unsaturated chains). N-alkanes were identified by comparison of retention times with
n-alkane standards (C10–C40; Sigma Aldrich, St. Louis, MO, USA). Branched alkanes and
unsaturated compounds were identified by comparing the Kovats index (KI) with those of
known compounds and by comparison of mass spectra using the NIST5 library.

Adjustments were made to peak time based on the time and area of the octadecane
standard (e.g., Arcaz et al., 2016). Relative abundance of each CHC was expressed as the
proportion of its adjusted peak area on the total adjusted areas (the sum of the adjusted
areas of all the CHCs). The absolute amount of each compound was calculated according
to the known amount of octadecane present within the sample based on the area under the
GC peak. The amount of total CHCs of each specimen was then stimated as the sum of the
abundance of all the CHCs.

Data analysis
Inter and intraspecific differences on cuticular profiles were examined bymeans of Principal
Components Analysis (PCA), performedwith the R package FactoMineR. For adults, scores
for the first three PCA factors were used as dependent variables in a multivariate analysis
of variance (MANOVA) to test for differences in CHC profiles between species and
sexes. The interaction term was included to assess whether sex-specific differences in
CHC composition were consistent between the two species. CHC profiles of larvae were
compared between species using ANOVA and the first PCA factor scores as the dependent
variable. Differences in the relative abundance of the major classes of CHC compounds
(i.e., n-alkanes, branched alkanes (methyl-alkanes and other branched alkanes) and
unsaturated compounds) between species, stages and sexes were also assessed by ANOVAs.
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Relative abundance data were arcsine square-root transformed for analyses. Normality
andhomocedasticity assumptionswere validated onmodel residuals by graphical inspection
(plots of residuals versus fitted values and Q–Q plots) (Zuur et al., 2009). Because CHCs
≤20C and CHCs >20C are involved in different biological functions, these analyses were
made separately for each group. All statistical analyses were performed in R studio version
0.99.896.

RESULTS
Overall CHC profiles
The total number of CHCs in adults of N. baeticus was 57 for males and 50 for females.
In E. jesusarribasi, 46 CHCs were identified in males and 56 in females. The longest chain
length CHC of adults of E. jesusarribasiwas hexatriacontane (36C), while that ofN. baeticus
was shorther (31C), corresponding to tritriacontane. Larvae of both species had a lower
number of CHC compounds than adults (25 in N. baeticus and 20 in E. jesusarribasi)
and the former had shorter chain lengths. CHC length of larvae of both species ranged
from 14 to 24 carbon atoms, the longest CHC being an unidentified branched alkane
in N. baeticus and an unidentified unsaturated CHC in E. jesusarribasi (see Table S1 for
specific information of CHC compounds). The total amount of CHCs was also higher in
adults of both species than larvae life stage (Table S1).

The most abundant CHC in adults was a brached alkane compound in both species. In
N. baeticus, it was an undeterminated one (25C) in males and the 4-methyl pentacosane
in females (25C), while in E. jesusarribasi it was n-dimethyl tritriacontane (33C) in both
sexes. In larvae, the most abundant compound was docosene (22C) in N. baeticus and
octadecene (18C) in E. jesusarribasi, both unsaturated CHCs (Table S1).

The PCA returned two principal factors that explained 32.65% and 9.94% of the total
variance in adults and 46.83% and 12.23% in larvae. Two-dimensional ordination plots
of PCA analysis showed a clear differentiation between CHC profiles in both species.
The first factor divided samples by species both in adults and larvae stages (Fig. 1). The
second factor separated adults by sexes, grouping females in the positive and males on the
negative side of the axis (Fig. 1). The distribution pattern revealed larger differences in
CHC composition between sexes in N. baeticus than in E. jesusarribasi as well as a higher
intraspecific variability in larvae of the latter.

In adults, MANOVA analyses showed significant differences in CHC composition
between species (Pillai’s Trace = 0.99, df = 33, p< 0.001), sex (Pillai’s Trace = 0.93,
df = 33, p < 0.001) and their interaction (Pillai’s Trace = 0.95, df = 33, p < 0.001),
consistent with the patterns found by PCA. The compound that contributed most to the
differentiation between species was tricosane (23C), only present in N. baeticus (Table 1).
Methyl-alkane (27C) was the most contributing compound in the differentiation between
sexes, being only present in N. baeticus females.

In larvae, CHC profiles significantly differed between species (F = 554.3, p< 0.001). The
compound that contributed most to such differentiation was an unsaturated compound
(22C), which was ten times more abundant in N. baeticus than in E. jesusarribasi.
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Figure 1 Projection of principal component analysis (PCA) factor scores with the first two PCA
factors of the quantitative patterns of cuticular hydrocarbons (CHCs) in adults (A) and larvae (B) of
Nebrioporus baeticus and Enochrus jesusarribasi.

Botella-Cruz et al. (2017), PeerJ, DOI 10.7717/peerj.3562 6/16

https://peerj.com
http://dx.doi.org/10.7717/peerj.3562


Table 1 Total number of cuticle hydrocarbons compounds and relative abundances of the main classes for adults (A), females (F), males (M)
and larvae (L) life stages of the studied species. CHCs were analyzed in two separated groups in function of its chain length (≤20 C and >20 C).

Alkanes Unsaturated

Species Life stage Sex Total n-Alkanes Methyl branched Other branched

n◦ % n◦ % n◦ % n◦ %

CHCs ≤ 20C
A F 7 4 48.04 0 0 1 1.96 2 50.00
A M 7 4 54.33 0 0 0 0 3 45.66N. baeticus
L – 10 3 14.86 1 2.7 3 8.22 3 74.22
A F 11 4 45.97 0 0 4 11.88 3 42.15
A M 3 3 100 0 0 0 0 0 0E. jesusarribasi

L – 11 5 20.81 0 0 2 7.2 4 71.99

CHCs > 20C
A F 43 11 25.37 17 51 5 17.28 10 6.35
A M 50 13 18.22 17 42.51 10 34.17 10 5.10N. baeticus
L – 15 2 8.57 3 5.62 2 1.34 8 84.47
A F 45 8 16.04 13 43.32 16 35.46 8 5.18
A M 43 7 13.05 19 47.09 10 32.31 7 7.55E. jesusarribasi

L – 9 0 0 0 0 0 0 9 100

Table 2 Comparison of the relative abundance (%) of the main cuticle hydrocarbons classes of the study species with freshwater beetles.

ALL CHCs

Habitat Family Species Sex Alkanes Unsaturated Unidentified

n-
Alkanes

Methyl
branched

Other
branched

F 17.64 41.3 34.00 7.11 Present studyHypersaline Hydrophilidae E. jesusarribasi
M 13.38 46.83 32.38 7.41 ’’
F 26.47 59.47 16.54 8.48 ’’

Mesosaline Dytiscidae N. baeticus
M 19.34 41.9 32.36 6.40 ’’

Freshwater Dytiscidae Agabus anthracinus – 46.9 25.9 0 27.1 Alaire et al. (1998)
Freshwater Dytiscidae Agabus bipustulatus – 52.7 0 0 47.3 Jacob & Hansen (1986)

F 78.5 3.4 5.6 8.3 4.2 ’’
Freshwater Dytiscidae Dytiscus marginalis

M 36 2.7 1.8 59.5 ’’
Freshwater Dytiscidae Ilybius angustior M 43 1.5 1.8 51.6 2.1 ’’

Patterns in CHC classes
In general, methyl-alkanes were the most abundant class of CHCs in adults of both species,
representing between 41–59% of the total CHCs (Tables 1 and 2), while unsaturated
compounds were the dominant class in larvae (>80%). Significant differences in abundance
of all CHC classes were found between larvae and adults in the two studied species, both
in CHCs ≤20C and CHCs >20C (Table S2).
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Table 3 Species, sex and its interaction effects on the relative abundance of the main cuticle hydrocar-
bons (CHCs≤ 20C) in adults.

Class df F value P value

Species 1 11.92 0.001
Sex 1 26.80 <0.001
Species*Sex 1 13.30 <0.001

n-Alkanes

Residuals 34
Species 1 51.23 <0.001
Sex 1 94.11 <0.001
Species*Sex 1 36.49 <0.001

Unsaturated

Residuals 34

Notes.
df , degrees of freedom.

Table 4 Species, sex and its interaction effects on the relative abundance of the main cuticle hydrocar-
bons classes (CHCs > 20C) in adults.

Class df F value P value

Species 1 28.88 <0.001
Sex 1 13.01 <0.001
Species*Sex 1 2.67 0.12

n-Alkanes

Residuals 34
Species 1 19.15 <0.001
Sex 1 17.97 <0.001
Species*Sex 1 1.89 0.17

Branched alkanes
(Methyl-alkanes
and others)

Residuals 34
Species 1 0.12 0.73
Sex 1 0.11 0.74
Species*Sex 1 1.74 0.19

Unsaturated

Residuals 34

Notes.
df , degrees of freedom.

Compounds shorter than 20 carbon atoms
Volatile CHCs were represented almost equally by n-alkanes and unsaturated compounds
in females of both species and in males of N. baeticus. In E. jesusarribasi males, the n-
alkanes represented the 100% of CHCs (Table 3). Methyl-alkanes were absent in both
species. Despite these similar abundance patterns, the relative abundance of unsaturated
and n-alkane compounds significantly differed between species, being higher inN. baeticus
than in E. jesusarribasi (Table 4). The relative abundance of these classes also differed
between sexes showing a contrasting pattern on each species (i.e., significant species × sex
interaction, see Table 4). In larvae, significant differences were also found between species
in relative abundance of n-alkanes (F = 43.27, p< 0.001) and unsaturated compounds
(F = 37.63, p< 0.001).
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Compounds longer than 20 carbon atoms
Branched alkanes, especially methyl-alkanes, was the most abundant class in adults of
both species, followed by n-alkanes and unsaturated compounds (Table 3). Significant
differences in relative abundance of n- alkanes and branched alkenes were found between
species and sexes (Table 4). Nebrioporus baeticus showed a higher abundance of n-alkanes
compared with E. jesusarribasi and females of both species showed a significantly higher
abundance than males. The opposite patterns were found for branched alkanes. In larvae,
unsaturated compounds represented 84% in N. baeticus and 100% in E. jesusarribasi
(Table 3), being this difference in abundance highly significant (F = 8.60, p< 0.01).

DISCUSSION
The CHC profile characterized for adults of the two species of saline water beetles studied
here differed from that of other freshwater beetles, and showed common patterns
to those generally attributed to adaptation to aridity in terrestrial Coleoptera. This
points to an important role of cuticle permeability in driving tolerance to salinity and
desiccation in these species. Comparison of CHC profiles between adults ofN. baeticus and
E. jesusarribasi and between life-stages and sexes within each species also revealed potential
inter and intraspecific differences in cuticle permeability likely related with differences in
tolerance to osmotic stress.

Interspecific variation in CHCs
We found marked differences in the patterns of CHC profiles between the saline studied
species and those previously reported for freshwater ones (Jacob & Hansen, 1986; Alarie,
Joly & Dennie, 1998). In particular, if the CHC composition of N. baeticus is compared
with that of other freshwater species within the family Dytiscidae (Table 2), the cuticle
of the saline species was characterized by a higher abundance of longer chain branched
alkanes, while freshwater species display a relatively complex spectrum of CHCs with
predominating amounts of unbranched components (n-alkanes and unsaturated alkenes)
(Table 2). Methyl-alkanes melt 10–30 ◦C below n-alkanes with the same chain length,
depending on the location of the methyl branch (Gibbs & Pomonis, 1995). The abundance
of long-chain branched compounds and their interactions with other alkanes compounds
will determine the overall waterproofing properties of the surface lipids. Accordingly, the
CHC profile of the saline beetles studied here, dominated by more complex compounds,
is expected to confer them a more impermeable cuticle than that of freshwater ones.
This is likely an adaptation of insects living in temporary saline waters in arid climatic
regions to the osmotic stress imposed by water salinity and desiccation during seasonal
droughts. Previous studies have reported differences in water loss rates between beetle
species with different saline optima (Pallarés et al., 2016) or between freshwater and saline
populations of corixids (Cannings, 1981), supporting such hypothesis. Furthermore, a
recent transcriptomic study in Anopheles larvae has suggested that cuticle composition may
be altered to deal with osmoregulatory stress by decreasing permeability in saline water,
as cuticle and cytoskeleton genes were robustly induced at 40–50% seawater salinities
(Uyhelji, Cheng & Besansky, 2016).
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Some of the characteristics of CHC profiles described in the saline species studied here
have been also shown in terrestrial beetles adapted to aridity (Jacob & Hansen, 1986; Lockey,
1979; Lockey, 1988; Nelson & Charlet, 2003). For example, the predominant class of CHCs
in desert Tenebrionidae, with an exceptionally thick and impermeable epicuticular wax
layer, are branched alkanes (Crowson, 1981), like in adults of the two studied species. In
five desert species from Arizona, no unsaturated hydrocarbons were detected in the cuticle
(Jacob & Hansen, 1986) and the alkanes included both straight and branched chains, having
the latter generally more carbon atoms (Crowson, 1981). In the tenebrionid beetle Eleodes
armata LeConte, 1851 and a house cricket, Acheta domesticus L., 92% of the branched
compounds were alkanes (Jackson & Blomquist, 1976; Hadley, 1977). Thus, salinity could
impose a selective pressure on CHC profile of aquatic insects similar to that exerted by
aridity in terrestrial species. Long-chain methylbranched hydrocarbons could have an
important role in limiting water loss by osmosis or by transpiration through the cuticle.

The association between salinity, desiccation and CHC composition is also supported if
the CHCs of the two studied species are compared. A similar total number of compounds
was identified in both species suggesting a similar complexity of cuticle chemistry, but
differences in chain length and specific CHCs were found, pointing to a more impermeable
cuticle in E. jesusarribasi than in N. baeticus. Carbon chain length of CHCs ranged up
to 36C in E. jesusarribasi and 31C in N. baeticus. In addition, most of the compounds
of E. jesusarribasi ranged between 31–36C chain length. A high percentage of long-
chain hydrocarbons has been shown to confer impermeability to the cuticle in other
arthropods (e.g., Hadley, 1977; Toolson & Hadley, 1977; Lockey, 1980; Gibbs & Pomonis,
1995; Gibbs, Fukuzato & Matzkin, 2003; Gibbs & Rajpurohit, 2010). The contribution
of CHCs in driving differences in stress tolerance between aquatic beetles needs to
be further investigated, but the differences in cuticle permeability between the two
species inferred from our results are consistent with the higher desiccation resistance
(Pallarés et al., 2017), osmoregulatory ability and salinity tolerance (Pallarés et al., 2015) of
E. jesusarribasi compared to N. baeticus. Specifically, the average water loss rates under
desiccation conditions (40% RH) was 4.04% of fresh mass h−1 in N. baeticus and 1.58% of
fresh mass h−1 in E. jesusarribasi (Pallarés et al., 2017).

Intraspecific variation in CHCs
The different CHC profiles between larvae and adults within the two studied species were
also consistent with the expected differences in cuticle permeability between mature and
immature stages. Larvae had a remarkably lower number of CHCs with shorter chain
length compared with adults in both species. Furthermore, unsaturated compounds
were the most abundant CHC class in larvae, as expected according to their thinner,
softer and more permeable cuticle if compared with adults, and therefore less effective
against water loss (Chapman, 1975). Adults showed a lower abundance of unsaturated
CHCs and a greater concentration of branched (their most abundant CHC class) than
n-alkanes. These compounds, with higher molecular weight and melting temperatures
(Gibbs & Pomonis, 1995), may confer adults cuticle a higher resistance to water loss (Chung
& Carroll, 2015), as required during flight dispersal.
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Such differences in CHC complexity between adults and larvae reveal an important
ontogenetic modification of the cuticular lipids composition, in which chemical signature
becomes enriched as the individual is developing to adult, with the increase of long-chain
compounds with higher molecular weight. The main changes in CHC composition occur
during the development from larval to adult stages, although sex dependent compositions
also reflect a possible pheromonal function of CHCs ≤ 20C, usually carried out by volatile
compounds (Jacob & Hansen, 1986).

The CHC profile described here for two saline water beetles suggests that the cuticle of
aquatic coleopteran could have an important role in adaptation to salinity and desiccation.
Studies comparing cuticular lipids and water loss rates among related water beetle species
would provide a better understanding of how changes in lipid composition modulate
cuticular transpiration in these insects. The relationship between CHC composition and
salinity tolerance also needs to be further explored by comparison of CHC profiles between
freshwater and saline species across beetle lineages and the study of the plasticity of cuticle
permeability in relation with changes in salinity.
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