Biogeography and evolution of European cave salamanders, *Hydromantes* (Urodela: Plethodontidae), inferred from mtDNA sequences

S. Carranza¹*, A. Romano², E. N. Arnold³ and G. Sotgiu⁴

¹Departament de Biologia Animal, Universitat de Barcelona, Avgda. Diagonal 645, E-08028 Barcelona, Spain, ²Dipartimento di Biologia, Università di Roma Tor Vergata, Via della Ricerca Scientifica, 00173 Rome, Italy,
³Department of Zoology, The Natural History Museum, London SW7 5BD, UK, and
⁴Associazione Culturale Naturalistica Ziricheltaggi, Strada Vicinale Filigheddu 62/C, 07100 Sassari, Italy

ABSTRACT

Aim To infer the phylogenetic relationships and biogeography of *Hydromantes*, with special emphasis on the European taxa. In particular, we aimed to test: (1) the monophyly of the European species and current views on their interrelationships; and (2) previously proposed timings of the separation of European and American *Hydromantes*, and of biogeographically important events within Europe.

Location California and the Western Mediterranean Basin, specifically south-east France, Italy, and the island of Sardinia.

Methods Partial sequences of mitochondrial genes (cytochrome b and 12S rRNA) were obtained from 45 specimens of *Hydromantes*, including all European extant species and subspecies, and two species from California. In addition, a fragment of the mitochondrial 16S rRNA gene was amplified for 16 specimens. Data sets were aligned using ClustalX, and well-supported phylogenetic trees were produced using maximum-likelihood, Bayesian and maximum-parsimony methods. Estimates of divergence times were obtained with the program r8s, the molecular clock being calibrated using the opening of the Strait of Gibraltar, the final event in the Messinian Salinity Crisis of 5.3 Ma.

Results Separation between the American and European clades occurred approximately 13.5 Ma, most probably before or after westward dispersal across the Bering Land Bridge. In Europe, divergence started in the late Miocene, when *Hydromantes* (A.) genei separated from other members of the genus 9 Ma and colonized south-west Sardinia. Movement between the European mainland and Sardinia, by a member of the subgenus *Speleomantes*, occurred in the Messinian Salinity Crisis, after the Mediterranean Basin desiccated almost completely 5.96 Ma. Subsequent widespread aridification fragmented the geographical ranges of *Hydromantes*, which live in cool and humid conditions, resulting in the origin of the six species in the subgenus *Speleomantes*. In contrast, a second period of diversification, in continental Europe 2–1.3 Ma, was probably caused by very cold interludes during the climatic oscillations that characterized the Pleistocene.

Main conclusions The molecular clock used here indicates that the separation of Californian and European *Hydromantes* occurred more recently than previously believed, and the same is true of some subsequent phylogenetic divergences within Europe. Estimated dates for these divergence events are consistent with known geophysical and climatic events that could have caused or facilitated them.

Keywords Amphibians, *Atylodes*, Bering Land Bridge, *Hydromantes*, Mediterranean Basin, Messinian Salinity Crisis, mitochondrial DNA, phylogeography, Pleistocene glaciations, *Speleomantes*.

*Correspondence: Salvador Carranza, Departament de Biologia Animal, Universitat de Barcelona, Av. Diagonal 645, E-08028 Barcelona, Spain. E-mail: scarranza@ub.edu
INTRODUCTION

The lungless salamanders that comprise the family Plethodontidae include nearly 70% of the 557 extant species of urodèles (Min et al., 2005), and are distributed predominantly in the Americas (Wake, 1966). The only known Old World members of the family are the recently described Karsenia koreana (Min et al., 2005) from south-west Korea and the European cave salamanders. The seven presently recognized species of these occur in the extreme south-east of France, northern and central Italy, and the Mediterranean island of Sardinia, and are most closely related to three species in California assigned to the genus Hydromantes Gistel, 1868 (Wake et al., 1978; Lanza et al., 1995; Nascetti et al., 1996; Jackman et al., 1997). In recent decades, the European forms have been referred either to this genus or to Speleomantes Dubois, 1984. Use of Hydromantes for these species has recently been recommended, with recognition of three subgenera: Hydromantes for the Californian species; Speleomantes for most European ones; and Atylodes for the distinctive European H. genei Temminck & Schlegel, 1838 (Wake et al., 2005; see also Crochet, 2007). This treatment is followed here.

As the occurrence of members of Hydromantes in Europe makes American plethodontids paraphyletic, it is assumed that the genus dispersed into Europe from there. As yet, however, there is no consensus on the precise origins of the surprisingly disjunct distribution of Hydromantes (for a review of this topic see Wake et al., 1978; Lanza et al., 1995). Various suggested dates for entry into the Old World include: the early Eocene (Wake, 1966; Lanza et al., 1995; Delfino et al., 2005; Muller, 2006); the early Oligocene, around the time urodèles of the family Salamandridae are thought to have entered North America from Eurasia (Estes, 1970); near the end of the Oligocene (Wake et al., 1978); the late Miocene or Pliocene (Dunn, 1926); the Pleistocene or even more recently (Schmidt, 1946). All but one of these proposed timings are considerably later than the last continental connection between Europe and North America across the North Atlantic (early Eocene; 50 Ma), so dispersal is usually assumed to have been across the Bering Land Bridge. This route existed between Alaska and Siberia, first being interrupted around 4.8–7.4 Ma but still existing intermittently until 11,000 years ago (Marincovich & Gladenkov, 1999; Sher, 1999). After the Eocene, American lineages entering Siberia would have been able to reach Europe as the intervening Turgai Strait disappeared (Prothero, 1994). Dispersal across the Bering Land Bridge has also been proposed for some other amphibian groups, such as toads (Bufoidae) and tree frogs (Hylidae) in the Oligocene (Borkin, 1999), and for many mammal lineages into the Pleistocene (see for instance Wallace & Wang, 2004).

In recent years there has been considerable work on the taxonomy and relationships of European Hydromantes. Their morphology, taxonomy, allozymes and biogeography were investigated by Lanza et al. (1995), whose work was complemented by the chromosome and cytogenetic studies of Nardi and his co-workers (Nardi et al., 1986, 2000; Nardi, 1991). Other authors later used the data of Lanza et al. (1995) to reassess genetic variability and biogeography (Nascetti et al., 1996; Cimmaruta et al., 1997; Forti et al., 1997). All three American species of Hydromantes and three European ones (see Discussion) were included in a study of bolitoglossine plethodontids based on mitochondrial DNA (Jackman et al., 1997). Despite incomplete sampling of the European species and use of only a single fragment of one gene (cytochrome b), the results were largely congruent with those of Nascetti et al. (1996). Both analyses indicated that the European cave salamanders are monophyletic, and that H. (A.) genei of south Sardinia is the sister taxon of the remaining species, from the neighbouring European mainland and from eastern Sardinia. This pattern of relationship is often taken as indicating that Sardinia was invaded twice by Hydromantes (see, for example, Lanza, 1983). However, an equally parsimonious scenario, in terms of journeys, is that there was a single invasion of Sardinia followed by the evolution of the subgenus Speleomantes there and a reinvasion of the mainland (Nascetti et al., 1996). Separation of H. (A.) genei has been assigned to the Oligocene (Wake et al., 1978; Lanza, 1983), when the microplate that formed Corsica and Sardinia separated from the French–Iberian continental margin, and movement of Speleomantes has been assigned to the Messinian Salinity Crisis at the very end of the Miocene.

In spite of all the recent work on Hydromantes and long-standing interest in its biogeography, a comprehensive molecular phylogeny based on fragments of more than a single gene is still lacking. This is especially surprising given that estimates of relationships based on DNA have been used to reconstruct the biogeography and evolution of many other groups of Mediterranean amphibians and to revise their taxonomy (see García-Paris & Jockusch, 1999; García-Paris et al., 2003; Carranza & Arnold, 2004; Carranza & Wade, 2004; Fromhage et al., 2004; Martínez-Solano et al., 2004; Carranza & Amat, 2005; Mattoccia et al., 2005). We consequently use sequences from three mitochondrial genes to infer phylogenetic relationships within Hydromantes, with special emphasis on the European taxa, of which all recognized taxa are considered. The phylogeny is used to test monophyly of the European species and current views on their interrelationships, and to estimate the time of their separation from American Hydromantes, and of the two supposed invasions of Sardinia. Results are also combined with other data (Lanza et al., 1995, 2001; Nascetti et al., 1996; Lanza & Leo, 2001) to revise the taxonomy of the European cave salamanders.

MATERIALS AND METHODS

Samples, DNA extraction and PCR amplification

A total of 45 specimens of the genus Hydromantes were used in this study (see Table 1 & Fig. 1). They included two representatives of the subgenus Hydromantes from California, six of the subgenus Atylodes from south-west Sardinia, and 37 of the subgenus Speleomantes from Sardinia, France and mainland
Table 1 Details of material and new sequences used in this study. The number after the species name refers to the locality shown in Fig. 1.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Locality</th>
<th>Accession numbers</th>
<th>Cyt b/12S/16S Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydromantes (H.) brunus</td>
<td>California (USA)</td>
<td>NC_006345 (mt genome)</td>
<td></td>
</tr>
<tr>
<td>Hydromantes (H.) platycerus</td>
<td>California (USA)</td>
<td>U89612/DQ283227</td>
<td></td>
</tr>
<tr>
<td>Hydromantes (A.) genei</td>
<td>Sanità, Fluminimaggiore, Cagliari, Sardinia (Italy)</td>
<td>EU117017/EU116957/EU117001</td>
<td>E10076.5</td>
</tr>
<tr>
<td>Hydromantes (A.) genei</td>
<td>Sanità, Fluminimaggiore, Cagliari, Sardinia (Italy)</td>
<td>EU117018/EU116958/EU117000</td>
<td>E10076.6</td>
</tr>
<tr>
<td>Hydromantes (A.) genei</td>
<td>Grotta su Mannau, Sardinia (Italy)</td>
<td>EU117019/EU116959/EU116999</td>
<td>E3056.8</td>
</tr>
<tr>
<td>Hydromantes (A.) genei</td>
<td>Monte Tassu, Carbonia, Sardinia (Italy)</td>
<td>EU117020/EU116960</td>
<td>E1037.1</td>
</tr>
<tr>
<td>Hydromantes (A.) genei</td>
<td>Monte Tassu, Carbonia, Sardinia (Italy)</td>
<td>EU117021/EU116961</td>
<td>E1037.2</td>
</tr>
<tr>
<td>Hydromantes (A.) genei</td>
<td>Monte Tassu, Carbonia, Sardinia (Italy)</td>
<td>EU117022/EU116962</td>
<td>E1037.3</td>
</tr>
<tr>
<td>Hydromantes (H.) brunus</td>
<td>Conca ‘e Crapa, Sardinia (Italy)</td>
<td>EU117002/EU116942/EU116995</td>
<td>E3056.6</td>
</tr>
<tr>
<td>Hydromantes (H.) brunus</td>
<td>Conca ‘e Crapa, Sardinia (Italy)</td>
<td>EU117003/EU116943/EU116996</td>
<td>E3056.7</td>
</tr>
<tr>
<td>Hydromantes (H.) brunus</td>
<td>Conca ‘e Crapa, Sardinia (Italy)</td>
<td>EU117004/EU116944/EU116994</td>
<td>E3056.5</td>
</tr>
<tr>
<td>Hydromantes (H.) brunus</td>
<td>Grotta su Mannau, Sardinia (Italy)</td>
<td>EU117006/EU116946/EU116997</td>
<td>E3056.13</td>
</tr>
<tr>
<td>Hydromantes (H.) brunus</td>
<td>Grotta su Mannau, Sardinia (Italy)</td>
<td>EU117007/EU116947/EU116998</td>
<td>E3056.14</td>
</tr>
<tr>
<td>Hydromantes (H.) brunus</td>
<td>Grotta su Mannau, Sardinia (Italy)</td>
<td>EU117008/EU116948</td>
<td>E10076.7</td>
</tr>
<tr>
<td>Hydromantes (H.) brunus</td>
<td>Grotta su Mannau, Sardinia (Italy)</td>
<td>EU117009/EU116949</td>
<td>E1006.8</td>
</tr>
<tr>
<td>Hydromantes (H.) brunus</td>
<td>Grotta su Mannau, Sardinia (Italy)</td>
<td>EU117010/EU116950</td>
<td>E10076.9</td>
</tr>
<tr>
<td>Hydromantes (H.) brunus</td>
<td>Mount Sette Fratelli, Burcei, Cagliari, Sardinia (Italy)</td>
<td>EU117011/EU116951</td>
<td>E10076.1</td>
</tr>
<tr>
<td>Hydromantes (H.) brunus</td>
<td>Mount Sette Fratelli, Burcei, Cagliari, Sardinia (Italy)</td>
<td>EU117012/EU116952</td>
<td>E10076.2</td>
</tr>
<tr>
<td>Hydromantes (H.) brunus</td>
<td>Mount Sette Fratelli, Burcei, Cagliari, Sardinia (Italy)</td>
<td>EU117013/EU116953</td>
<td>E10076.3</td>
</tr>
<tr>
<td>Hydromantes (H.) brunus</td>
<td>Ulassai, Sardinia (Italy)</td>
<td>EU117014/EU116954/EU116991</td>
<td>E3056.9</td>
</tr>
<tr>
<td>Hydromantes (H.) brunus</td>
<td>Ulassai, Sardinia (Italy)</td>
<td>EU117015/EU116955/EU116993</td>
<td>E3056.10</td>
</tr>
<tr>
<td>Hydromantes (H.) brunus</td>
<td>Ulassai, Sardinia (Italy)</td>
<td>EU117016/EU116956/EU116992</td>
<td>E3056.11</td>
</tr>
<tr>
<td>Hydromantes (S.) strinatii</td>
<td>W. Monte Groppi, Genova, Liguria (Italy)</td>
<td>EU117023/EU116963/EU116988</td>
<td>E3056.4</td>
</tr>
<tr>
<td>Hydromantes (S.) strinatii</td>
<td>W. Monte Groppi, Genova, Liguria (Italy)</td>
<td>EU117024/EU116964</td>
<td>E25106.3</td>
</tr>
<tr>
<td>Hydromantes (S.) strinatii</td>
<td>W. Monte Groppi, Genova, Liguria (Italy)</td>
<td>EU117025/EU116965</td>
<td>E25106.4</td>
</tr>
<tr>
<td>Hydromantes (S.) strinatii</td>
<td>Rio Tonna, Vallbrevena, Genova, Liguria (Italy)</td>
<td>EU117028/EU116968</td>
<td>E2306.17</td>
</tr>
<tr>
<td>Hydromantes (S.) strinatii</td>
<td>S. Bartolomeo, Savignone, Genova, Liguria (Italy)</td>
<td>EU117027/EU116967</td>
<td>E2306.9</td>
</tr>
<tr>
<td>Hydromantes (S.) strinatii</td>
<td>S. Bartolomeo, Savignone, Genova, Liguria (Italy)</td>
<td>EU117026/EU116966</td>
<td>E2306.11</td>
</tr>
<tr>
<td>Hydromantes (S.) strinatii</td>
<td>Trabocchetto, Pietra Ligure, Savona, Liguria (Italy)</td>
<td>EU117029/EU116969/EU116989</td>
<td>E2306.20</td>
</tr>
<tr>
<td>Hydromantes (S.) strinatii</td>
<td>Monte Pietravechia, Pigna, Imperia, Liguria (Italy)</td>
<td>EU117032/EU116972/EU116990</td>
<td>E2306.18</td>
</tr>
<tr>
<td>Hydromantes (S.) strinatii</td>
<td>Maritime Alps (France)</td>
<td>EU117031/EU116971</td>
<td>E14076.1</td>
</tr>
<tr>
<td>Hydromantes (S.) strinatii</td>
<td>Maritime Alps (France)</td>
<td>EU117030/EU116970</td>
<td>E14076.2</td>
</tr>
<tr>
<td>Hydromantes (S.) ambrosii</td>
<td>Apuane Alps, Massa-Carrara, Tuscany (Italy)</td>
<td>EU117033/EU116973/EU116986</td>
<td>E3056.2</td>
</tr>
<tr>
<td>Hydromantes (S.) ambrosii</td>
<td>Apuane Alps, Massa-Carrara, Tuscany (Italy)</td>
<td>EU117034/EU116974</td>
<td>E25106.1</td>
</tr>
<tr>
<td>Hydromantes (S.) ambrosii</td>
<td>Apuane Alps, Massa-Carrara, Tuscany (Italy)</td>
<td>EU117035/EU116975</td>
<td>E25106.2</td>
</tr>
<tr>
<td>Hydromantes (S.) ambrosii</td>
<td>Grotta Fornace, Pignone, La Spezia, Liguria (Italy)</td>
<td>EU117042/EU116982</td>
<td>E2306.5</td>
</tr>
<tr>
<td>Hydromantes (S.) ambrosii</td>
<td>Grotta Fornace, Pignone, La Spezia, Liguria (Italy)</td>
<td>EU117043/EU116983</td>
<td>E2306.4</td>
</tr>
<tr>
<td>Hydromantes (S.) ambrosii</td>
<td>Caverna Ossifera, Cassana, La Spezia, Liguria (Italy)</td>
<td>EU117044/EU116984/EU116987</td>
<td>E2306.3</td>
</tr>
<tr>
<td>Hydromantes (S.) ambrosii</td>
<td>Caverna Ossifera, Cassana, La Spezia, Liguria (Italy)</td>
<td>EU117045/EU116985</td>
<td>E2306.1</td>
</tr>
<tr>
<td>Hydromantes (S.) ambrosii</td>
<td>Liguria Region (Italy)</td>
<td>AY728215 (mt partial genome)</td>
<td>HitalCB12</td>
</tr>
<tr>
<td>Hydromantes (S.) italicus</td>
<td>Sorgenti dell’Esino, Esanatoglia, Ancona, Marche (Italy)</td>
<td>EU117036/EU116976</td>
<td>E2306.12</td>
</tr>
<tr>
<td>Hydromantes (S.) italicus</td>
<td>Abrutti, Farindola, Pescara (Italy)</td>
<td>EU117037/EU116977</td>
<td>E2306.14</td>
</tr>
<tr>
<td>Hydromantes (S.) italicus</td>
<td>Monte Tezio, Perugia, Umbria (Italy)</td>
<td>EU117038/EU116978</td>
<td>E2306.8</td>
</tr>
<tr>
<td>Hydromantes (S.) italicus</td>
<td>Monte Tezio, Perugia, Umbria (Italy)</td>
<td>EU117040/EU116980</td>
<td>E2306.6</td>
</tr>
<tr>
<td>Hydromantes (S.) italicus</td>
<td>Monte Tezio, Perugia, Umbria (Italy)</td>
<td>EU117039/EU116979</td>
<td>E2306.7</td>
</tr>
<tr>
<td>Hydromantes (S.) italicus</td>
<td>Cardoso, Stazzema, Lucca, Tuscany (Italy)</td>
<td>EU117041/EU116981</td>
<td>E2306.15</td>
</tr>
<tr>
<td>Pleurodeles walti</td>
<td>Larba (Algeria)</td>
<td>AY222504/AY222460</td>
<td>Anc10</td>
</tr>
<tr>
<td>Pleurodeles walti</td>
<td>Constantine (Algeria)</td>
<td>AY222462/AY222506</td>
<td>Anc12</td>
</tr>
<tr>
<td>Pleurodeles walti</td>
<td>Tabarca (Tunisia)</td>
<td>AY222518/AY222474</td>
<td>E181210</td>
</tr>
<tr>
<td>Pleurodeles walti</td>
<td>Annaba (Algeria)</td>
<td>AY222507/AY222463</td>
<td>Anc13</td>
</tr>
<tr>
<td>Pleurodeles walti</td>
<td>Extremos (Portugal)</td>
<td>AY222515/AY222471</td>
<td>E10114</td>
</tr>
<tr>
<td>Pleurodeles walti</td>
<td>Perelló (Spain)</td>
<td>AY222531/AY222487</td>
<td>E181224</td>
</tr>
<tr>
<td>Salamandra algira tingitana</td>
<td>Djebel El Fahies (Morocco)</td>
<td>AY247732/DQ221227</td>
<td>E1712.7</td>
</tr>
<tr>
<td>Salamandra algira algira</td>
<td>Akshur near Talembot (Morocco)</td>
<td>AY247734/DQ221229</td>
<td>E1712.9</td>
</tr>
</tbody>
</table>
Italy. The sampling included representatives of two recently described subspecies: *H. (S.) imperialis* sarrabusensis (Lanza et al., 2001) and *H. (S.) ambrosii* bianchii (Lanza et al., 2005) as well as representatives of the two distinct populations of *H. (A.) genei* from south-west Sardinia (Lanza et al., 1995). DNA was extracted using a DNAasy extraction kit (Qiagen, Valencia, CA, USA) following the manufacturer’s instructions. Primers used in both amplification and sequencing were cytochrome *b1* and cytochrome *b2* (Kocher et al., 1989) for the cytochrome *b* (cytb) gene, 12Sa and 12Sb (Kocher et al., 1989) for the 12S rRNA gene, and 16Sar and 16Sbr (Palumbi, 1996) for the 16S rRNA gene. The three gene fragments were amplified by polymerase chain reaction (PCR), and the resultant DNA was sequenced using the same standard protocols and conditions as described in Carranza et al. (1999, 2001).

Phylogenetic analyses

DNA sequences were aligned using ClustalX (Thompson et al., 1997) with default parameters (gap opening = 10; gap extension = 0.2). All the cytb sequences had the same length and therefore no gaps were postulated. These sequences were translated into amino acids using the vertebrate mitochondrial code and no stop codons were observed, suggesting that they were probably all functional. Although some gaps were postulated in order to resolve length differences in the 12S rRNA and 16S rRNA gene fragments, all positions could be unambiguously aligned and were therefore included in the analyses.

A saturation analysis for the cytb third codon positions is shown in Fig. 2. The results indicate that not even the cytb third codon transitions were saturated (Fig. 2a), and therefore all positions were included in the phylogenetic analyses. Three methods of phylogenetic analysis were employed for all three independent partitions, and the combined data set and their results compared. These methods were: maximum likelihood (ML), Bayesian analysis, and maximum parsimony (MP). Modeltest v. 3.06 (Posada & Crandall, 1998) was used to select the most appropriate model of sequence evolution for the ML and Bayesian analyses of the independent partitions and the combined data sets, under the Akaike information criterion. The models selected were: TVM+G for the cytb partition (the GTR+G was implemented for the cytb partition in MrBayes); GTR+G for the 12S rRNA partition; HKY+G for

Table 1 Continued

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Locality</th>
<th>Accession numbers Cyt b/12S/16S</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salamandra s. longirostris</td>
<td>Los Barrios (Spain)</td>
<td>DQ221243/DQ221223</td>
<td>E1712.37</td>
</tr>
<tr>
<td>Salamandra infrainmaculata orientalis</td>
<td>W. of Adana (Turkey)</td>
<td>DQ221242/DQ221222</td>
<td>E3009.22</td>
</tr>
<tr>
<td>Salamandra s. europaea</td>
<td>El Montseny (Spain)</td>
<td>AY222503/AT222459</td>
<td>E1712.49</td>
</tr>
<tr>
<td>Salamandra lanzai</td>
<td>(Italy)</td>
<td>DQ221244/DQ221224</td>
<td>E3009.23</td>
</tr>
</tbody>
</table>

Figure 1

the 16S rRNA partition; and GTR+1+G for both the cytb+12S and cytb+12S+16S combined data sets.

Bayesian analyses were performed with MrBayes v. 3.0b4 (Huelsenbeck & Ronquist, 2001). For the combined data sets (cytb+12S and cytb+12S+16S), each gene had its own independent model of evolution (see above) and model parameters. Four incrementally heated Markov chains with the default heating values were used. All analyses started with randomly generated trees and ran for 2×10^6 generations, with sampling occurring at intervals of 100 generations, producing 20,000 trees. For each independent analysis, the log-likelihood values of all trees saved were plotted against the generation time. After verifying that stationarity had been reached, both in terms of likelihood scores and parameter estimation, the first 3,500 trees in the cytb+12S data set and the first 4000 trees in the cytb+12S+16S data set were discarded, and independent majority-rule consensus trees were generated from the remaining (post-burning) trees. The frequency of any particular clade of the consensus tree represents the posterior probability of that node (Huelsenbeck & Ronquist, 2001); only values above 95% were considered to indicate that nodes were significantly supported (Wilcox et al., 2002).

ML analyses were performed with both paup* v. 4.0b10 (Swofford, 1998) and phyml (Guindon & Gascuel, 2003). MP analyses were performed with paup* v. 4.0b10 alone. Both ML and MP analyses performed in paup* included heuristic searches involving tree bisection and reconnection (TBR) branch swapping with 10 and 100 random stepwise additions of taxa, respectively. Gaps were included as a fifth state. Reliability of the MP and ML trees was assessed by bootstrap analysis (Felsenstein, 1985), involving 1000 replications for both ML (phyml method only) and MP analyses.

Topological incongruence among partitions was tested using the incongruence length difference (ILD) test (Michievelich & Farris, 1981; Farris et al., 1994). In this test, 10,000 heuristic searches were carried out after the removal of all invariant characters from the data set (Cunningham, 1997). To test for incongruence among data sets, we also used a reciprocal 70% bootstrap proportion (Mason-Gamer & Kellogg, 1996) or a 95% posterior probability threshold. Topological conflicts were considered significant if two different relationships for the same set of taxa were both supported with bootstrap values $\geq 70\%$ or posterior probability values $\geq 95\%$.

Topological constraints to test alternative topologies were constructed using MacClade v. 4.0 (Maddison & Maddison, 1992) and compared with optimal topologies using the Shimodaira-Hasegawa (SH) (Shimodaira & Hasegawa, 1999) test implemented in paup* v. 4.0b10 (Swofford, 1998). Basic sequence statistics and genetic distances were calculated with the program mega v. 2.1 (Kumar et al., 2001).

The computer program rrtree (Robinson-Rechavi & Huchon, 2000) was used to run a relative-rate test on the sequences used for calibration to find out if there were any sequences that evolved at a significantly different rate.

Estimation of divergence times

In order to estimate divergence times between lineages, the computer program r8s v. 1.6.4 was used (Sanderson, 1997, 2002). This program implements several methods for estimating absolute rates of molecular evolution, ranging from standard maximum-likelihood ones to more experimental semiparametric and nonparametric methods, which relax the stringency of the clock assumptions using smoothing methods. One of the advantages of this program is that, through a cross-validation test, it allows the user to explore the fidelity with which any of these methods explains the branch-length variation (Sanderson, 2002). This procedure removes each terminal branch in turn, estimates the remaining parameters of the model without that branch, predicts the anticipated number of substitutions on the pruned branch, and reports the performance of these predictions as a cross-validation score, which allows the user to select the method that best explains the branch-length variation (Sanderson, 2002).

To calibrate the clock, use of available fossil plethodontids was considered. A single vertebra of Hydromantes is known from the
Miocene of Slovakia, dated by stratigraphy to 12.5–15 Ma (Venczel & Sanchiz, 2005). It has been tentatively assigned to the European Hydromantes, partly because of its geographical situation (continental Europe). However, the single vertebra found is damaged, and such a small element could possibly be an intrusion. The genera Plethodon and Aneides have been reported from early Miocene deposits 23 Ma (Tiwen & Wake, 1981). Again, however, identification is based only on vertebrae, and these may not be fully diagnostic. Therefore, use of this palaeontological information for calibrating a molecular clock of the group is not advisable, especially when phylogenies indicate that vertebrae are sometimes labile in plethodontids (Parra-Olea & Wake, 2001).

Instead of these fossils we have used the genetic divergence of two salamander lineages, each of which appears to have undergone vicariance when the Strait of Gibraltar, between the Atlantic Ocean and the Mediterranean Sea, opened. This event terminated the Messinian Salinity Crisis at the very end of the Miocene, one of the best studied and well-dated geological events in the Earth’s history (Hsu et al., 1977; Hsu, 1983; Blondel & Aronson, 1999; Krijgsman et al., 1999; Duggen et al., 2003). About 5.96 Ma, the marine gateways that existed between the Atlantic Ocean and the Mediterranean were closed by the uplift of the Gibraltar arch, which formed a land bridge between the Iberian Peninsula and north-west Africa. This event terminated the continuous influx of waters from the Atlantic to the Mediterranean that had existed before. Without this input, sea level fell by over 1000 m in less than 1000 years, desiccating areas of the floor of the Mediterranean Basin, some of which later became covered by freshwater deposits. The Messinian Salinity Crisis ended exactly 5.3 Ma, when the Gibraltar arch collapsed, opening the Strait of Gibraltar and allowing the entire Mediterranean Basin to refill (perhaps filling in less than 100 years). This event broke the land connection between south-west Europe and north-west Africa that had existed for more than 600,000 years (Blondel & Aronson, 1999; Krijgsman et al., 1999).

A number of amphibian and other terrestrial vertebrate groups with long fossil histories in Europe have distinctive taxa in the south-west of the continent. Several of these possess sister groups in north-west Africa, and phylogenies indicate that they invaded the area from Europe. The amphibian sister pairs show similar divergences in mtDNA. This is true of members of two salamandrids, Pleurodeles (Carranza & Arnold, 2004) and Salamandra (Escoriza et al., 2006), and of three anurans, Alytes (Martinez-Solano et al., 2004), Discoglossus (Zangari et al., 2006) and Pelobates (Garcia-Paris et al., 2003). The repeated phylogenetic pattern and similarity in degree of divergence makes it likely that the separation of all sister pairs was caused by the same vicariance event. Entry into north-west Africa and the vicariance event itself probably resulted from the Messinian Salinity Crisis, as some of these taxa also colonized some Mediterranean islands at the same time (Martinez-Solano et al., 2004; Zangari et al., 2006). The land bridge and desiccation of the Mediterranean floor would have permitted entry to north-west Africa, and the formation of the Strait of Gibraltar could have caused the vicariance. The strait is likely to have been a very effective barrier to the forms concerned. With very few exceptions (Vences et al., 2003), such as tree frogs, which may be transported on vegetation carried by currents or storms, amphibians do not cross significant saltwater barriers, being extremely sensitive to the effects of salt on their osmotic balance (Duellman & Trueb, 1986). As the strait is approximately 20 km wide, with a strong surface current that would make any potential journey even longer, passage by amphibians across it is improbable. The Messinian period was the first and only time that south-west Europe and north-west Africa made terrestrial contact, and the end of this period 5.3 Ma was the only known event that could have caused the vicariance indicated in the five groups of amphibians.

The only alternative possibility is that the groups concerned reached north-west Africa via a more eastern land connection that has existed more or less continuously between Eurasia and Africa since the mid-Miocene. This route resulted from Arabia, which formed the north-eastern edge of the African plate, colliding with the Turkish plate 15–19 Ma (Rögl, 1999). However, there is no evidence in the form of fossils or relict populations that close relatives of the north-west African amphibian taxa considered here ever occurred outside south-west Europe (Carranza & Arnold, 2004). Consequently, entry to north-west Africa at the western end of the Mediterranean, followed by vicariance caused by the opening of the Strait of Gibraltar, is much more likely. The latter event is consequently used as a calibration point in the Pleurodeles and Salamandra lineages included as outgroups in the Hydromantes phylogeny.

Another relevant point is that, without additional, independent loci to use in the analyses apart from the mtDNA sequences, the divergence times between taxa could be slightly different from the estimates from mtDNA simply because of variation in the time of coalescence. However, stochastic variation in the coalescence is less relevant when comparing highly divergent taxa and taxa with low effective population sizes.

RESULTS

In order to infer the phylogenetic relationships of Hydromantes, three independent data sets were created. Data set 1 contained cytb+12S rRNA sequences of 47 Hydromantes (two representatives of the North American subgenus Hydromantes were used to root the tree). The results of the ILD test showed that the two gene partitions were congruent (P = 0.72), and independent analyses of the two gene partitions confirmed that there were no topological conflicts (Mason-Gamer & Kellogg, 1996). Both mitochondrial fragments were therefore combined for further analyses. Of the 771 bp of the combined data set (398 of cytb and 373 of 12SrRNA), 223 bp were variable (147 bp of cytb and 74 bp of 12S rRNA) and 197 bp were parsimony-informative (128 bp of cytb and 69 bp of 12S rRNA). The results of the ML, MP and Bayesian analyses of Data set 1 are summarized in Fig. 3.
Data set 2 included all 16 *Hydromantes* specimens for which three mitochondrial genes (cytb + 12S + 16S) were sequenced; *H. (H.) brunus* (Gorman, 1954) was used to root the tree (see Table 1). As with Data set 1, the results of the ILD test showed that the three gene partitions were congruent \((P = 0.51)\), and independent analyses of the three gene partitions confirmed that there were no topological conflicts. Of the 1306 bp analysed (398 bp of cytb; 367 bp of 12S rRNA; and 541 bp of 16S rRNA), 323 bp were variable (132 bp of cytb; 68 bp of 12S rRNA; and 123 bp of 16S rRNA), and 216 bp were parsimony-informative (92 bp of cytb; 46 bp of 12S rRNA; and 78 bp of 16S rRNA). The results of the ML, MP and Bayesian analyses of this data set were very similar to the results obtained with Data set 1, and therefore the bootstrap support and posterior probability (pp) values resulting from the analysis of Data set 2 are incorporated into Fig. 3.

Figure 3 Maximum-likelihood tree (GTR + I + G; \(-\log \text{likelihood} = 2988.22406\)) inferred with Data set 1 (cytb + 12S rRNA). Numbers after species names identify individual samples; their geographic locations are shown in Fig. 1. Figures above branches indicate bootstrap support values for maximum-likelihood analyses (left), posterior probability (pp) values for the Bayesian analyses (centre), and bootstrap support for the maximum-parsimony analysis (right). Numbers below the branches are the same parameters for analyses of Data set 2. A single number above or below a branch indicates that support was the same for all three methods of analysis. The symbol ‘\(-\)’ indicates that the particular methods indicated did not support the topology presented in this figure.
Data set 3 was constructed to calibrate the molecular clock and consisted of cytb+12S rRNA mitochondrial sequences of all the specimens included in Data set 1 plus six representatives of the genus Pleurodeles, six representatives of the genus Salamandra, and one Ambystoma t. tigrinum Dunn, 1940 that was used to root the tree. This data set included 752 bp (398 bp of cytb and 354 bp of 12S rRNA), of which 316 bp were variable (186 bp of cytb and 130 bp of 12S rRNA) and 284 bp were parsimony-informative (171 bp of cytb and 113 bp of 12S rRNA). As with Data set 1, the ILD test suggested that the two partitions were congruent ($P = 0.31$) and that there was no conflict between the trees constructed with each one of the partitions independently (data not shown). As some of the taxa from Data set 3 belong to different families of the order Urodela, a relative rate test was carried out in order to check that all the sequences were evolving at a similar rate. In all comparisons between sequences of representatives of the family Salamandridae (Salamandra and Pleurodeles) and of the family Plethodontidae (Hydromantes), the test did not detect significant differences in the relative rate of evolution ($P > 0.05$). Therefore, the ML tree with branch lengths resulting from the analysis of Data set 3 was used to infer dates with r8s v. 1.6.4 (Sanderson, 1997, 2002). The cross-validation test showed that branch-length variation was explained with the highest fidelity by the Langley-Fitch (LF) method (Langley & Fitch, 1973). Hence, the LF method was run with the Powell algorithm using two calibration points (see Materials and Methods). The inferred cladogram, with dates highlighted in the most relevant nodes, is shown in Fig. 4. The substitution rate inferred from r8s for the concatenated cytb+12S fragments is 0.99% per million years. This is comparable to other rates calculated for exactly the same mtDNA regions in other reptiles and amphibians (Carranza & Arnold, 2004; Carranza et al., 2004).

The results of the phylogenetic analyses shown in Fig. 3 indicate that, within the European clade, all the continental species form a well-supported monophyletic group with Data sets 1 and 2 and with all the methods of analysis (ML, Bayesian and MP). The continental clade is further subdivided into two well-supported clades consisting of H. (S.) strinatii Aellen, 1958 and H. (S.) italicus Dunn, 1923 + H. (S.) abrosii Lanza, 1955. Variability within H. (S.) strinatii is relatively high, with populations from the Maritime Alps in France and Monte Pietravechia in Liguria, Italy, being quite divergent from all the remaining populations of H. (S.) strinatii sampled for our study (see Figs 1 & 2 and Table 1). According to the results from Fig. 3, H. (S.) abrosii is paraphyletic, with H. (S.) italicus branching inside it. The sister-group relationship between H. (S.) a. bianchii and H. (S.) italicus is well supported in both ML (82) and MP (70) analyses, but the pp value of the Bayesian analysis for this clade is inferior to 95 (85). The results of the analysis of Data set 1 suggest that the Hydromantes from Sardinia are not monophyletic. Instead, the tree from Fig. 3 suggests that the Hydromantes of the subgenus Atylodes from south-west Sardinia (see Fig. 1 & Table 1) are sister to all the remaining European taxa, although the bootstrap and pp support is very low in all the analyses (Fig. 3). The analyses of Data set 2 did not support a monophyletic insular Hydromantes either, but instead placed H. (A.) genei as sister to the Continental assemblage (data not shown). A constrained analysis, in which all the Hydromantes from Sardinia were forced monophyletic, resulted in a tree that was not significantly worse than the tree presented in Fig. 3 (Shimodaira-Hasegawa test; $P > 0.05$). The four insular taxa of the subgenus Speleomantes form a well-supported clade, but the relationships among them are unresolved. The two subspecies of H. (S.) imperialis Stefani, 1969 show a similar level of genetic differentiation to that between any other species pair of the subgenus Speleomantes.

DISCUSSION

Monophyly of European Hydromantes

The results presented in Fig. 3 agree with other evidence that the European species of the genus Hydromantes are monophyletic, although one American species was missing in our analyses. The genetic differentiation between American and European Hydromantes presented in our study is in agreement with the results of previous molecular studies using albumin immunology, allozymes, mitochondrial DNA, and cytogenetics (Wake et al., 1978; Nardi et al., 1986, 2000; Nardi, 1991; Lanza et al., 1995; Nascetti et al., 1996; Jackman et al., 1997), and is further supported by the morphological, osteological, karyological, cytogenetic and behavioural differences between the two clades (Wake, 1966; Lanza & Vanni, 1981; Nardi, 1991; Lanza et al., 1995).

Timing of the separation of European Hydromantes

The molecular clock used here indicates that the split between the American and the European Hydromantes occurred approximately 13.5 Ma, during the mid-Miocene. This date is much more recent than several of the previous estimates listed in the Introduction. Certainly, the low level of genetic divergence between American and European Hydromantes (see Table S1 in Supplementary Material) and the absence of saturation, even in the third codon positions of the fast-evolving cytb mitochondrial gene (Fig. 2), make it extremely unlikely that separation occurred before the Miocene. Consequently, entrance into Europe before the last continental connection between Europe and North America across the North Atlantic disappeared permanently in the early Eocene (50 Ma) would not have been possible. Instead, migration is likely to have been across the Bering Land Bridge. Such a route is also in agreement with the fact that European Hydromantes have their closest relatives in western North America. Exactly how the European and American sections of Hydromantes separated is not clear. The speciation event concerned could conceivably have occurred in north-west America or in Eurasia and may possibly have resulted from the widespread extinction that has clearly occurred in the huge region between California.
and Europe. Although the analyses by Min et al. (2005) did not support a sister taxa relationship between Hydromantes and Karsenia, a reanalysis of the Rag-1 sequences of Min et al. (2005) suggests that this hypothesis cannot be ruled out (data not shown). If Karsenia turns out to be the sister taxon of Hydromantes, the two may have entered Eurasia separately, or their common lineage may have done so. In the latter scenario, the speciation event that separated the genera may have taken place in Asia, in which case back migration into America by the lineage leading to the Californian forms is a possibility. At present, there is no way of choosing between these various possibilities, but for all of them the Bering Land Bridge would have been in place to permit the migrations involved (Marincovich & Gladenkov, 1999; Sher, 1999). Spread across mainland Asia to Europe would have been possible around the time American and Eurasian Hydromantes separated, as the previously intervening Turgai Strait had disappeared long before (Prothero, 1994). Several other groups moved across

Figure 4 Cladogram of Hydromantes based on Data set 3 and program r8s v. 1.6.4 (Sanderson, 2002); see Materials and Methods for details. The scale is calibrated in millions of years. Dashed lines indicate branch lengths and time periods that have been abbreviated.
Eurasia during this general period. Among these were salamandrids of the genera *Tylotriton*, *Cynops*, *Pachytriton* and *Paramesotriton* (Carranza & Arnold, 2004; Carranza & Wade, 2004; Weisrock et al., 2005), *Takydromus* lacerids (Arnold et al., 2007) and *Testudo* tortoises and their closest relatives (Parham et al., 2006).

Relationships of main European groups

The phylogenetic analyses presented here (Figs 3 & 4) are congruent with other evidence that *H. (A.) genei* is sister to all the other European cave salamanders. Although support for this relationship in the DNA phylogeny is low, the other evidence is compelling in its variety and extent. It includes thorough analyses of a wide range of allozymic data derived from many specimens (Nascetti et al., 1996), a phylogeny constructed using information from the Hy/Pol III repetitive DNA family (Nardi et al., 2000), and the shared derived presence of morphologically differentiated sex chromosomes of the XX/XY type in the 14th chromosome pair of the subgenus *Speleomantes* (Nardi et al., 1986; Nardi, 1991). Moreover, *H. (A.) genei* has more pericentric heterochromatin and more restriction sites for a particular marker in the ribosomal genes than the other European *Hydromantes*, and there are also differences in the distribution of centromeric satellites on the chromosomes (Nardi, 1991). Finally, mainland and east Sardinian *Speleomantes* share some helminth parasites, whereas different species are found in *H. (A.) genei* (Lanza et al., 1995).

Possible double colonization of Sardinia

The molecular clock suggests that separation of *H. (A.) genei* from other members of the genus occurred approximately 9 Ma. This contrasts with previous estimates of around 27–30 Ma in the late Oligocene (Wake et al., 1978, 2005). The estimated date of separation from mainland relatives is similar to those for the Corsican painted frog, *Discoglossus montalentii* Lanza, Nascetti, Capula & Bullini, 1984 (Zangari et al., 2006) and the Mountain newts, *Euproctus*, of Sardinia and Corsica (Carranza & Amat, 2005). If the possibility of simultaneous transmarine dispersal is discounted, this suggests that all three taxa were involved in the same vicariant event. A land bridge is reported to have been in place at this time, in the Tortonian period, namely 10 Ma (Orszag-Sperber et al., 1993). Another possible mechanism suggested by Lanza (1983) is that a small microplate, the ‘Iglesiente block’, broke away in the Oligocene from the continental mainland with *H. (A.) genei* on it, and later collided with the south-western part of the main Corsico-Sardinian microplate, but only in the Pliocene. Our results and similar results by Zangari et al. (2006) and Carranza & Amat (2005) are more compatible with the first scenario.

The date of the supposed second invasion of Sardinia by *Hydromantes*, involving a member of the subgenus *Speleomantes*, is estimated at 6.4 Ma and is similar to that of the separation of the Tyrrenhian painted frog, *Discoglossus sardus* (Tschudi, 1837), from its nearest mainland relatives (Zangari et al., 2006). The estimates are close enough to the time of the Messinian Salinity Crisis to suggest that invasion was made possible by this event, when the sea bed between the continental mainland and Sardinia desiccated. Such Messinian movement of *Hydromantes* has been postulated previously (Nascetti et al., 1996). Estimated dates of dispersal of other groups from the European mainland to Mediterranean islands are also more or less simultaneous with the Messinian Salinity Crisis (Blondel & Aronson, 1999; Terrasa et al., 2004; Poulakakis et al., 2003; Carranza et al., 2006; Zangari et al., 2006; Arnold et al., 2007). As noted earlier, the alternative possibility, that *Speleomantes* evolved on Sardinia and then invaded the Italian mainland, is equally parsimonious in terms of number of journeys and distances covered. However, such a scenario would imply that the earlier lineages of *Hydromantes* became extinct on the mainland. This seems unlikely, given the great diversity of habitats there. Extinction on the mainland would be unexpected, if *Hydromantes* survived in the generally drier and much less varied environment of Sardinia.

Divergence of *Hydromantes* (A.) genei

Both the mitochondrial DNA data presented here and allozymes (Nascetti et al., 1996; Cimmaruta et al., 1997; Forti et al., 1997) indicate that there are two well-differentiated clades within *H. (A.) genei*, as presently understood. One contains populations from the Carbonia–Barbusi–Monte Tasua zone (specimens 43–45, Figs 1 & 3), and the other the remaining more northerly populations (specimens 1–3; Figs 1 & 3). The molecular clock indicates that these two lineages originated around the Plio-Pleistocene boundary, about the time that divergence occurred in continental lineages of *Speleomantes* (see Fig. 4).

Diversification within the subgenus *Speleomantes*

Diversification of the subgenus *Speleomantes* within eastern Sardinia and continental Europe also commenced close to the Miocene–Pliocene boundary and was similarly likely to have been triggered by the Messinian Salinity Crisis. One of the principal consequences of the desiccation of the Mediterranean Sea was the increase in the aridity of the whole area and its surroundings. For instance, it is said that the Vienna woods were replaced by steppes and that palm trees grew in Switzerland (Blondel & Aronson, 1999). The increase in aridity probably fragmented the geographical distributions of many species associated with moist habitats, including the European *Hydromantes*, and may have been responsible for these species being confined to mountainous regions and caves (Lanza et al., 1995). However, Californian *Hydromantes* are found in similar habitats, suggesting that the European species have not been much modified by the Messinian. Other cases of fragmentation around this time occurred elsewhere in the Mediterranean region. For example, in the Iberian peninsula they include Bosca’s newt *Lissotriton boscai* (Lataste, 1879).
(Martinez-Solano et al., 2006), the smooth snake, Coronella austriaca Laureni, 1768 (Santos et al., in press), and various groups of lacertid lizards, including western rock lizards, Iberolacerta (Arribas & Carranza, 2004; Carranza et al., 2004), wall lizards, Podarcis (Harris et al., 2002; Pinho et al., 2006) and Schreiber’s green lizard, Lacerta schreiberi Bedriaga, 1878 (Paulo et al., 2001).

A total of six lineages of the subgenus Speleomantes originated quite rapidly soon after the Messinian (Fig. 4): four in east Sardinia and two on the continent. The east Sardinian lineages all show a high level of differentiation from each other. This is in contrast to the supposed near identity of two of the continental lineages, H. (S.) flavus Stefani, 1969 and H. (S.) supramontis Lanza, Nascetti & Bullini, 1986, in which a divergence of only 0.4% in the cytochrome b gene was reported (Jackman et al., 1997). However, the data presented here indicate that the specimens sequenced in that study were in fact individuals of just one species, H. (S.) supramontis. The two continental lineages that apparently originated close in time to the Messinian Salinity Crisis are H. (S.) strinatii, and the ancestor of populations assigned to H. (S.) ambrosii and H. (S.) italicus. There was considerable later splitting within these lineages, with four diversification events occurring relatively close to the Plio-Pleistocene boundary.

In H. strinatii, the mtDNA phylogeny suggests that there was an early split, estimated at about 1.8 Ma, between the most western populations, in south-east France (samples 27 and 28), and those farther east, in Italy. Among the latter, a later division at 1.3 Ma apparently separated a western population (sample 26 from Monte Pietravezchia) from all those to the east. A disjunction here is also reflected by the low value of gene flow estimated using allozymes and Wright’s (1951) method (Nm = 0.28; Forti et al., 1997), although there may have been some gene flow across the boundary. In the remaining Italian populations, the most western one (sample 25, from Savona) is separated from the rest (samples 19–24, including that from Genoa) by a gap of over 100 km. In spite of this, all these samples are very similar in their mtDNA, a finding also indicated by the high level of gene flow detected with allozyme data (Nm = 0.70; Forti et al., 1997). It has been suggested that the ophiolitic substrate in the intervening area might limit the presence of plethodontids there (Sindaco et al., 2006), but relatively recent contact across it must have occurred.

The mitochondrial DNA phylogeny of the H. (S.) ambrosii-H. (S.) italicus clade, which borders H. (S.) strinatii to the east, appears to have undergone a division around 2.2 Ma. This separated H. (S.) a. ambrosii from a unit consisting of H. (S.) a. bianchii and H.(S.) italicus. The boundary between the two subspecies assigned to H. ambrosii is the valley of the Magra River. Here, the two forms are parapatric and their allozymes show no evidence of gene flow. The two forms differ in four discriminant loci and constitute reciprocally monophyletic units (Forti et al., 1997). Although mtDNA sequence data indicate that H. (S.) ambrosii is paraphyletic, this contrasts with interpretations of allozyme data in which H. (S.) ambrosii is regarded as monophyletic (Nascetti et al., 1996; Forti et al., 1997). A constrained analysis, in which all the H. (S.) ambrosii were forced monophyletic, resulted in a tree that was not significantly worse than the tree presented in Fig. 3 (Shimodaira-Hasegawa test; P > 0.05), and therefore indicates that the monophyly of H. (S.) ambrosii is not rejected by our data.

The molecular clock suggests that separation of H. (S.) a. bianchii and H. (S.) italicus, which occurs even further east, took place around 1.3 Ma, but a relatively wide hybrid zone between the two forms has been reported (Forti et al., 1997; Ruggi et al., 2005). Molecular studies of both allozymes and restriction fragment-length polymorphism of mtDNA show that, while allozymes indicate considerable gene flow across the contact zone between the two, the mitochondrial haplotypes characteristic of each do not cross it. As mitochondrial features are inherited exclusively through female lineages, this suggests that hybridization results from movement of males, something that appears to have involved those of H. (S.) a. bianchii penetrating the range of H. (S.) italicus (Ruggi et al., 2005). The fact that mitochondrial haplotypes of H. (S.) italicus have not entered populations assigned to H. a. bianchii means that the apparent paraphyly of H. (S.) ambrosii indicated by our mtDNA analyses, with H. (S.) a. bianchii being more similar to H. (S.) italicus, is not an artefact resulting from such spread.

Although H. (S.) italicus has the largest geographic distribution of all European members of its genus, extending over 600 km, it has a low level of genetic divergence that is reflected by both allozymes (Nascetti et al., 1996; Forti et al., 1997) and the mtDNA studied here (see Table S1). Even samples from opposite ends of the range (numbers 42 and 48, Fig. 1) show an uncorrected genetic divergence of less than 1% for the cytb. Such uniformity suggests relatively rapid spread, perhaps after a restriction in range that reduced previous genetic diversity.

The complex pattern of diversification in H. (S.) strinatii and the H. (S.) ambrosii-H. (S.) italicus clade is likely to have been produced by repeated fragmentation and subsequent molecular divergence, often followed by range expansion so that some of the differentiated units contacted each other. Dramatic climatic oscillations particularly in and just before the Pleistocene would have provided a mechanism for these events (Hewitt, 2000). Cold interludes with increased glaciation are likely to have restricted populations of Hydromantes to small favourable areas, from which they spread during subsequent relatively warm and humid interludes (Forti et al., 1997). Such distributional changes were widespread in many other animal and plant groups during the Pleistocene (Taberlet et al., 1998; Hewitt, 2000, 2003). Extinctions were also common, and the huge expansion that appears to have taken place in H. (S.) italicus may possibly have been facilitated by extermination of previous populations in its present range.

TAXONOMIC ACCOUNT

Status of Hydromantes imperialis sarabusensis

The phylogenetic analyses based on mtDNA (Figs 3 & 4) clearly indicate that the recently described subspecies H. (S.) imperialis...
CONCLUDING REMARKS

Hydromantes exhibits an impressive disjunction, with two surviving monophyletic groups of species that are separated by more than 9000 km. The calibration of the molecular clock employed here results in earlier dates for events than previously suggested. Apart from the reasons already given for preferring the calibration used (see above), a further reason is that the estimates of the dates of phylogenetic bifurcations that it produces coincide with climatic and geophysical events that could have caused them. Thus, separation between American and European *Hydromantes* is estimated to have occurred at a time when the Bering Land Bridge was in place; the invasion of the ancestor of *H. (A.) genet* into Sardinia roughly coincides with the presence of a land bridge during the Tortonian period; movement of the subgenus *Speleomantes* between Italy and Sardinia occurred around the time of the Messinian Salinity Crisis, when terrestrial dispersal is likely to have been possible; initial divergence in both continental and Sardinian members of the subgenus *Speleomantes* occurred at a time when this event was causing climatic change likely to fragment distributions; and the later divergence of *Speleomantes* is associated with climatic fluctuations that characterize the Pleistocene epoch. Other calibrations of molecular clocks that result in earlier dating of phylogenetic events show less convincing correlations with known geophysical and climatic events.

ACKNOWLEDGEMENTS

We are very grateful to J. Roca for technical assistance during this work. S.C. is indebted to X. Rivera and D. Escoriza for their invaluable help in the field and fruitful discussion. We are also grateful to M. Comas, G. Damiani, V. Di Martino, G. Forcina, M. Giubilei, F. Oneto, D. Ottonello, N. Polini, S. Salviodo and C. Spilinga for their help in the sampling of the continental species. Tissue samples were collected with a permit from the ‘Ministero dell’Ambiente e della Tutela del Territorio’ (permit reference: DPN/2D/2006/7546). This work was funded by grant CGL2005-06876/BOS from the Ministerio de Educación y Ciencia, Spain, and grant 2005SGR00045 (Grup de Recerca Emergent) from the Generalitat de Catalunya. S.C. is funded by a Ramón y Cajal contract from the Ministerio de Educación y Ciencia, Spain.

REFERENCES

S. Carranza et al.

SUPPLEMENTARY MATERIAL

The following supplementary material is available for this article online:

Table S1 Pairwise uncorrected genetic distances (substitutions per site) for 771 bp of the cytochrome b + 12S rRNA mitochondrial genes.

This material is available as part of the online article from: http://www.blackwell-synergy.com/doi/abs/10.1111/j.1365-2699.2007.01817.x

Please note: Blackwell Publishing is not responsible for the content or functionality of any supplementary materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.

BIOSKETCHES

S. Carranza is a Ramón y Cajal research fellow in the Departament de Biologia Animal of the Universitat de Barcelona, Spain, with a special interest in the systematics, evolution and biogeography of the reptiles and amphibians of the Mediterranean Basin.

A. Romano is a contracted researcher in the Dipartimento di Biologia, Università di Roma Tor Vergata, Italy, examining the ecology, biogeography and genetic variation of Italian amphibians using mitochondrial markers.

E. N. Arnold is a research associate of the Natural History Museum, London, with a long-standing interest in the herpfauna of the Mediterranean Basin, Old World deserts and oceanic islands.

G. Sotgiu is a biologist interested in the morphology and conservation of the Sardinian endemic herpetofauna. He is president of the Associazione Culturale Naturalistica Zirichitaggi, Sardinia, Italy and collaborator of the Dipartimento di Zoologia, Università di Sassari, Italy.

© 2007 The Authors. Journal compilation © 2007 Blackwell Publishing Ltd